Advertisement
Exercise and Nutrition in Persons with Dementia Special Article| Volume 21, ISSUE 10, P1394-1401, October 2020

Download started.

Ok

Cognitive Impact of Calorie Restriction: A Narrative Review

      Abstract

      The impairment of cognitive function can cause substantial emotional and financial burdens. A recent global increasing trend in cognitive impairment and associated disorders has been observed, which will continue to grow as the population ages rapidly. As a nonpharmaceutical approach, calorie restriction (CR) has received extensive research interests due to its health benefits, including maintaining cognitive function. In this narrative review, we first briefly introduce the role of cognitive function in activities of daily living and CR as a part of healthy lifestyle behaviors to protect against cognitive decline. Second, we present results from human studies demonstrating that CR might be beneficial for improving age-related cognitive decline and cognitive impairment in the clinical population such as obesity and type 2 diabetes. Third, the potential mechanisms regarding the protective effects of CR on cognition are discussed. Fourth, specific suggestions are highlighted to be considered in future human studies. Overall, although there are few data available from human studies, CR appears to be beneficial for cognitive protection for both healthy and clinical populations. Further scientific investigations are needed before a firm conclusion can be made.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the American Medical Directors Association
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Smith J.
        • Ryan L.H.
        Chapter 16 - Psychological Vitality in the Oldest Old.
        in: Schaie K.W. Willis S.L. Handbook of the Psychology of Aging. 8th ed. Academic Press, San Diego2016: 303-319
        • Sachdev P.
        • Blacker D.
        • Blazer D.
        • et al.
        Classifying neurocognitive disorders: the DSM-5 approach.
        Nat Rev Neurol. 2014; 10: 634-642
        • Salthouse T.A.
        When does age-related cognitive decline begin?.
        Neurobiol Aging. 2009; 30: 507-514
        • Howes M.J.
        • Houghton P.J.
        Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function.
        Pharmacol Biochem Behav. 2003; 75: 513-527
        • Carroll K.M.
        • Kiluk B.D.
        • Nich C.
        • et al.
        Cognitive function and treatment response in a randomized clinical trial of computer-based training in cognitive-behavioral therapy.
        Subst Use Misuse. 2011; 46: 23-34
        • Kemoun G.
        • Thibaud M.
        • Roumagne N.
        • et al.
        Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia.
        Dement Geriatr Cogn Disord. 2010; 29: 109-114
        • Zou L.
        • Loprinzi P.D.
        • Yeung A.S.
        • et al.
        The beneficial effects of mind-body exercises for people with mild cognitive impairment: a systematic review with meta-analysis.
        Arch Phys Med Rehabil. 2019; 100: 1556-1573
        • Kong Z.
        • Hu M.
        • Liu Y.
        • et al.
        Affective and enjoyment responses to short-term high-intensity interval training with low-carbohydrate diet in overweight young women.
        Nutrients. 2020; 12: 442
        • Eymundsdottir H.
        • Chang M.
        • Geirsdottir O.G.
        • et al.
        Lifestyle and 25-hydroxy-vitamin D among community-dwelling old adults with dementia, mild cognitive impairment, or normal cognitive function.
        Aging Clin Exp Res. 2020 Apr 4. [Epub ahead of print];
        • Cherif A.
        • Roelands B.
        • Meeusen R.
        • et al.
        Effects of intermittent fasting, caloric restriction, and ramadan intermittent fasting on cognitive performance at rest and during exercise in adults.
        Sports Med. 2016; 46: 35-47
        • Yilmaz N.
        • Vural H.
        • Yilmaz M.
        • et al.
        Calorie restriction modulates hippocampal NMDA receptors in diet-induced obese rats.
        J Recept Signal Transduct Res. 2011; 31: 214-219
        • Bok E.
        • Jo M.
        • Lee S.
        • et al.
        Dietary restriction and neuroinflammation: A potential mechanistic link.
        Int J Mol Sci. 2019; 20: 464
        • Schafer M.J.
        • Dolgalev I.
        • Alldred M.J.
        • et al.
        Calorie restriction suppresses age-dependent hippocampal transcriptional signatures.
        PLoS One. 2015; 10: e0133923
        • Omodei D.
        • Fontana L.
        Calorie restriction and prevention of age-associated chronic disease.
        FEBS Lett. 2011; 585: 1537-1542
        • Kretsch M.J.
        • Green M.W.
        • Fong A.K.
        • et al.
        Cognitive effects of a long-term weight reducing diet.
        Int J Obes Relat Metab Disord. 1997; 21: 14-21
        • Martin C.K.
        • Anton S.D.
        • Han H.
        • et al.
        Examination of cognitive function during six months of calorie restriction: Results of a randomized controlled trial.
        Rejuvenation Res. 2007; 10: 179-190
        • D'Anci K.E.
        • Watts K.L.
        • Kanarek R.B.
        • et al.
        Low-carbohydrate weight-loss diets. Effects on cognition and mood.
        Appetite. 2009; 52: 96-103
        • Harder-Lauridsen N.M.
        • Nielsen S.T.
        • Mann S.P.
        • et al.
        The effect of alternate-day caloric restriction on the metabolic consequences of 8 days of bed rest in healthy lean men: a randomized trial.
        J Appl Physiol. 2017; 122: 230-241
        • Giles G.E.
        • Mahoney C.R.
        • Caruso C.
        • et al.
        Two days of calorie deprivation impairs high level cognitive processes, mood, and self-reported exert ion during aerobic exercise: A randomized double-blind, placebo-controlled study.
        Brain Cogn. 2019; 132: 33-40
        • Leclerc E.
        • Trevizol A.P.
        • Grigolon R.B.
        • et al.
        The effect of caloric restriction on working memory in healthy non-obese adults.
        CNS Spectr. 2020; 25: 2-8
        • Witte A.V.
        • Fobker M.
        • Gellner R.
        • et al.
        Caloric restriction improves memory in elderly humans.
        Proc Natl Acad Sci U S A. 2009; 106: 1255-1260
        • Lejeune M.P.
        • Van Aggel-Leijssen D.P.
        • Van Baak M.A.
        • et al.
        Effects of dietary restraint vs exercise during weight maintenance in obese men.
        Eur J Clin Nutr. 2003; 57: 1338-1344
        • Prehn K.
        • Jumpertz von Schwartzenberg R.
        • Mai K.
        • et al.
        Caloric restriction in older adults—differential effects of weight loss and reduced weight on brain structure and function.
        Cereb Cortex. 2017; 27: 1765-1778
        • Solianik R.
        • Sujeta A.
        • Ekanauskait A.
        Effects of 2-day calorie restriction on cardiovascular autonomic response, mood, and cognitive and motor functions in obese young adult women.
        Exp Brain Res. 2018; 236: 2299-2308
        • Xiang M.Q.
        • Liao J.W.
        • Huang J.H.
        • et al.
        Effect of a combined exercise and dietary intervention on self-control in obese adolescents.
        Front Psychol. 2019; 10: 1385
        • Zlibinait L.
        • Solianik R.
        • Vizbarait D.
        • et al.
        The effect of combined aerobic exercise and calorie restriction on mood, cognition, and motor behavior in overweight and obese women.
        J Phys Act Health. 2020; 17: 204-210
        • Pearce K.
        • Noakes M.
        • Wilson C.
        • et al.
        Continuous glucose monitoring and cognitive performance in type 2 diabetes.
        Diabetes Technol Ther. 2012; 14: 1126-1133
        • Espeland M.A.
        • Rapp S.R.
        • Bray G.A.
        • et al.
        Long-term impact of behavioral weight loss intervention on cognitive function.
        J Gerontol A Biol Sci Med Sci. 2014; 69: 1101-1108
        • Tay J.
        • Zajac I.T.
        • Thompson C.H.
        • et al.
        A randomised-controlled trial of the effects of very low-carbohydrate and high-carbohydrate diets on cognitive performance in patients with type 2 diabetes.
        Br J Nutr. 2016; 116: 1745-1753
        • Mukherjee J.
        • Christian B.T.
        • Dunigan K.A.
        • et al.
        Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studi es, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors.
        Synapse. 2002; 46: 170-188
        • Nyberg L.
        • Bäckman L.
        Cognitive ageing: a view from brain imaging.
        New Frontiers in Cognitive Ageing. Oxford University Press, Oxford2004
        • Lupien S.J.
        • McEwen B.S.
        • Gunnar M.R.
        • et al.
        Effects of stress throughout the lifespan on the brain, behaviour and cognition.
        Nat Rev Neurosci. 2009; 10: 434-445
        • Wrigley S.
        • Arafa D.
        • Tropea D.
        Insulin-like growth factor 1: At the crossroads of brain development and aging.
        Front Cell Neurosci. 2017; 11: 14
        • Merry B.J.
        Molecular mechanisms linking calorie restriction and longevity.
        Int J Biochem Cell Biol. 2002; 34: 1340-1354
        • Chistiakov D.
        • Sobenin I.
        • Revin V.
        • et al.
        Mitochondrial aging and age-related dysfunction ofmitochondria.
        Biomed Res Int. 2014; 2014: 238463
        • de Grey A.D.
        A proposed refinement of the mitochondrial free radical theory of aging.
        Bioessays. 1997; 19: 161-166
        • Flegal K.M.
        • Carroll M.D.
        • Kit B.K.
        • et al.
        Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010.
        JAMA. 2012; 307: 491-497
        • Gunstad J.
        Elevated body mass index is associated with executive dysfunction in otherwise healthy adults.
        Compr Psychiatry. 2007; 48: 57-61
        • Taras H.
        • Potts-Datema W.
        Obesity and student performance at school.
        J Sch Health. 2005; 75: 291-295
        • Gunstad J.
        • Lhotsky A.
        • Wendell C.R.
        • et al.
        Longitudinal examination of obesity and cognitive function: results from the Baltimore Longitudinal Study of Aging.
        Neuroepidemiology. 2010; 34: 222-229
        • Luchsinger J.A.
        • Gustafson D.R.
        Adiposity, type 2 diabetes, and Alzheimer’s disease.
        J Alzheimers Dis. 2009; 16: 693-704
        • Yau P.L.
        • Castro M.G.
        • Tagani A.
        • et al.
        Obesity and metabolic syndrome and functional and structural brain impairments in adolescence.
        Pediatrics. 2012; 130: e856-e864
        • Ward M.A.
        • Carlsson C.M.
        • Trivedi M.A.
        • et al.
        The effect of body mass index on global brain volume in middle-aged adults: A cross sectional study.
        BMC Neurol. 2005; 5: 23
        • Pannacciulli N.
        Brain abnormalities in human obesity: A voxel-based morphometric study.
        Neuroimage. 2006; 31: 1419-1425
        • Raji C.A.
        Brain structure and obesity.
        Hum Brain Mapp. 2010; 31: 353-364
        • Taylor R.
        Calorie restriction for long-term remission of type 2 diabetes.
        Clin Med (Lond). 2019; 19: 37-42
        • Ngezahayo A.
        • Schachner M.
        • Artola A.
        Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus.
        J Neurosci. 2000; 20: 2451-2458
        • Park C.R.
        • Seeley R.J.
        • Craft S.
        • et al.
        Intracerebroventricular insulin enhances memory in a passive-avoidance task.
        Physiol Behav. 2000; 68: 509-514
        • Mattson M.P.
        The impact of dietary energy intake on cognitive aging.
        Front Aging Neurosci. 2010; 2: 5
        • Duan W.
        • Guo Z.
        • Jiang H.
        • et al.
        Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor.
        Endocrinology. 2003; 144: 2446-2453
        • Xu B.
        • Goulding E.H.
        • Zang K.
        • et al.
        Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor.
        Nat Neurosci. 2003; 6: 736-742
        • Hadem I.K.H.
        • Majaw T.
        • Kharbuli B.
        • et al.
        Beneficial effects of dietary restriction in aging brain.
        J Chem Neuroanat. 2019; 95: 123-133
        • Fusco S.
        • Pani G.
        Brain response to calorie restriction.
        Cell Mol Life Sci. 2013; 70: 3157-3170
        • le Coutre J.
        • Mattson M.P.
        • Dillin A.
        • et al.
        Nutrition and the biology of human ageing: Cognitive decline/food intake and caloric restriction.
        J Nutr Health Aging. 2013; 17: 717-720
        • Lazarov O.
        • Marr R.A.
        Of mice and men: Neurogenesis, cognition and Alzheimer's disease.
        Front Aging Neurosci. 2013; 5: 43
        • Garraway S.M.
        • Huie J.R.
        Spinal plasticity and behavior: bdnf-induced neuromodulation in uninjured and injured spinal cord.
        Neural Plast. 2016; 2016: 9857201
        • Hassell J.
        • Ezzati M.
        • Alonso-Alconada D.
        • et al.
        New horizons for newborn brain protection: Enhancing endogenous neuroprotection.
        Archi Dis Child Fetal Neonatal. 2015; 100: F541-F552
        • Balaban R.S.
        • Nemoto S.
        • Finkel T.
        Mitochondria, oxidants, and aging.
        Cell. 2005; 120: 483-495
        • Wang X.
        • Pal R.
        • Chen X.W.
        • et al.
        High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region.
        Brain Res Mol Brain Res. 2005; 140: 120-126
        • Sharma R.
        • Dkhar P.
        Biological basis of aging: Theories and explanations. Hyderabad: Indian Academy of Geriatrics, Paras Medical Publisher.
        2014
        • Walsh M.E.
        • Shi Y.
        • Van Remmen H.
        The effects of dietary restriction on oxidative stress in rodents.
        Free Radic Biol Med. 2014; 66: 88-99
        • Morgan T.E.
        • Wong A.M.
        • Finch C.E.
        Anti-inflammatory mechanisms of dietary restriction in slowing aging processes.
        Interdiscip Top Gerontol. 2007; 35: 83-97
        • Franceschi C.
        • Capri M.
        • Monti D.
        • et al.
        Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studie s in humans.
        Mech Ageing Dev. 2007; 128: 92-105
        • Ovadya Y.
        • Krizhanovsky V.
        Senescent cells: SASPected drivers of age-related pathologies.
        Biogerontology. 2014; 15: 627-642
        • Patel N.V.
        • Gordon M.N.
        • Connor K.E.
        • et al.
        Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models.
        Neurobiol Aging. 2005; 26: 995-1000
        • Kaptan Z.
        • Akgün-Dar K.
        • Kapucu A.
        • et al.
        Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus.
        Brain Res. 2015; 1618: 194-204
        • Kishi T.
        • Hirooka Y.
        • Nagayama T.
        • et al.
        Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus of obesity-induced hypertensive rats.
        Int Heart J. 2015; 56: 110-115
        • Carvalho A.L.
        • Caldeira M.V.
        • Santos S.D.
        • et al.
        Role of the brain-derived neurotrophic factor at glutamatergic synapses.
        Br J Pharmacol. 2008; 153: S310-S324
        • Crozier R.A.
        • Bi C.
        • Han Y.R.
        • et al.
        BDNF modulation of NMDA receptors is activity dependent.
        J Neurophysiol. 2008; 100: 3264-3274
        • Vedder L.C.
        • Savage L.M.
        BDNF regains function in hippocampal long-term potentiation deficits caused by diencephalic damage.
        Learn Mem. 2017; 24: 81-85
        • Kohara K.
        • Kitamura A.
        • Morishima M.
        • et al.
        Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons.
        Science. 2001; 291: 2419-2423
        • Cabelli R.J.
        • Hohn A.
        • Shatz C.J.
        Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF.
        Science. 1995; 267: 1662-1666
        • McAllister A.K.
        • Lo D.C.
        • Katz L.C.
        Neurotrophins regulate dendritic growth in developing visual cortex.
        Neuron. 1995; 15: 791-803
        • Yamada K.
        • Nabeshima T.
        Brain-derived neurotrophic factor/TrkB signaling in memory processes.
        J Pharmacol Sci. 2003; 91: 267-270
        • Tyler W.J.
        • Alonso M.
        • Bramham C.R.
        • et al.
        From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning.
        Learn Mem. 2002; 9: 224-237
        • Mizuno M.
        • Yamada K.
        • Takei N.
        • et al.
        Phosphatidylinositol 3-kinase: A molecule mediating BDNF-dependent spatial memory formation.
        Mol Psychiatry. 2003; 8: 217-224
        • Wong W.T.
        Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation.
        Front Cell Neurosci. 2013; 7: 22
        • Moroi-Fetters S.E.
        • Mervis R.F.
        • London E.D.
        • et al.
        Dietary restriction suppresses age-related changes in dendritic spines.
        Neurobiol Aging. 1989; 10: 317-322
        • Guo J.
        • Bakshi V.
        • Lin A.L.
        Early shifts of brain metabolism by caloric restriction preserve white matter integrity and long-term memory in aging mice.
        Front Aging Neurosci. 2015; 7: 213
        • Fontana L.
        Modulating human aging and age-associated diseases.
        Biochim Biophys Acta. 2009; 1790: 1133-1138
        • Dhurandhar E.J.
        • Allison D.B.
        • van Groen T.
        • et al.
        Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer's disease pathology in a mouse model.
        PLoS One. 2013; 8: e60437
        • Solon-Biet S.M.
        • McMahon A.C.
        • Ballard J.W.O.
        • et al.
        The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice.
        Cell Metab. 2020; 31: 654
        • Yang F.
        • Chu X.
        • Yin M.
        • et al.
        mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits.
        Behav Brain Res. 2014; 264: 82-90
        • Kirk E.
        • Reeds D.N.
        • Finck B.N.
        • et al.
        Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction.
        Gastroenterology. 2009; 136: 1552-1560
        • Cholerton B.
        • Baker L.D.
        • Craft S.
        Insulin, cognition, and dementia.
        Eur J Pharmacol. 2013; 719: 170-179
        • Bingham E.M.
        • Hopkins D.
        • Smith D.
        • et al.
        The role of insulin in human brain glucose metabolism: an 18 fluoro-deoxyglucose positron emission tomography study.
        Diabetes. 2002; 51: 3384-3390
        • Deng L.
        • Wu Z.N.
        • Han P.Z.
        Effects of different levels of food restriction on passive-avoidance memory and the expression of synapsin I in young mice.
        Int J Neurosci. 2009; 119: 291-304
        • Inoue K.
        • Hanaoka Y.
        • Nishijima T.
        • et al.
        Long-term mild exercise training enhances hippocampus-dependent memory in rats.
        Int J Sports Med. 2015; 36: 280-285