References

Edgardo R. Sepulveda, BA, MA
National Institute on Ageing, Ryerson University
Toronto, ON, Canada

Nathan M. Stall, MD
National Institute on Ageing, Ryerson University
Toronto, ON, Canada

Division of General Internal Medicine and Geriatrics
Toronto, ON, Canada

Sinai Health System and the University Health Network
Toronto, ON, Canada

Women’s College Research Institute, Women’s College Hospital
Toronto, ON, Canada

Division of Geriatric Medicine
Department of Medicine
University of Toronto
Toronto, ON, Canada

Institute of Health Policy, Management and Evaluation, University of Toronto
Toronto, ON, Canada

Samir K. Sinha, MD, DPhil
National Institute on Ageing
Ryerson University
Toronto, ON, Canada

Division of General Internal Medicine and Geriatrics
Sinai Health System and the University Health Network
Toronto, Canada

Division of Geriatric Medicine
Department of Medicine
University of Toronto
Toronto, Canada

Institute of Health Policy
Management and Evaluation
University of Toronto
Toronto, Canada

Division of Geriatrics and Gerontology
Department of Medicine
Johns Hopkins University School of Medicine
Baltimore, MD

* Address correspondence to Samir K. Sinha, MD, DPhil, Division of General Internal Medicine and Geriatrics, Mount Sinai Hospital, Suite 475 - 600 University Avenue, Toronto ON MSG 2C4.

E-mail address: samir.sinha@sinalhealthsystem.ca

http://doi.org/10.1016/j.jamda.2020.08.039

Evaluation of Testing Frequency and Sampling for Severe Acute Respiratory Syndrome Coronavirus 2 Surveillance Strategies in Long-Term Care Facilities

To the Editor:

Identifying optimal testing strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in long-term care facilities (LTCFs) is a public health priority. Asymptomatic surveillance is necessary to detect asymptomatic and presymptomatic carriers to prevent widespread coronavirus disease 2019 (COVID-19) outbreaks in LTCFs. In the context of test availability, costs, and acceptability constraints, the trade-offs between testing intensity and potential benefits are currently unknown for LTCFs. Unique features of COVID-19 transmission dynamics within LTCFs and communities need to be considered when implementing an optimal surveillance strategy. Using a dynamic model of COVID-19 transmission in a LTCF setting, we estimated the impact of several SARS-CoV-2 surveillance strategies varying in test frequency and sampling on the time to diagnosis and the cumulative number of cases at first diagnosis.

Methods

We developed an agent-based model of SARS-CoV-2 transmission among (n = 280) residents and staff members of a hypothetical LTCF (Appendix, Supplementary Methods). Briefly, 1

The authors have no conflict of interest to disclose.
This research did not receive any funding from agencies in the public, commercial, or not-for-profit sectors.
infectious case is imported into the LTCF during the first 2 weeks of simulation, with all individuals susceptible at baseline. Individual status is tracked daily until a first case is diagnosed. Individuals can acquire SARS-CoV-2 from the community at a daily probability matching the definition of moderate community transmission (50 cases/100,000 people/14 days).3 The daily probability of being infected inside the LTCF varies with the number of infectious individuals, the basic reproductive number (R0), and the duration of infectiousness (D0 = 7 days).3 Individuals test positive for SARS-CoV-2 for 14 days postinfection, with a test sensitivity of 0.9. Seven strategies (S) were modeled with 1000 iterations each, testing: S1. 100% of individuals every 14 days; S2. 50% every 7 days; S3. 100% every 7 days; S4. 50% twice a week; S5. 20% every week; S6. Test 14% daily; S7. Test 100% twice a week.

Strategies were evaluated by the number of days to first diagnosis, the cumulative number of infected cases at the time of first diagnosis, and the number of tests used. We conducted sensitivity analyses accounting for uncertainty around model parameter values (Appendix, Supplementary Methods).

Results

Table 1 reports the delay to first diagnosis and cumulative cases by testing strategy. S1 was less optimal than S2 with longer delay to diagnosis (7.9 vs 6.6 days), more cases at first diagnosis (13.3 vs 7.3), and more tests to detect the first case (218 vs 192). Comparing S3 to S2, delay to diagnosis was shortened to 4.0 days and the number of cases decreased to 3.8, using 86 extra tests (25/case averted). S3 to S6 had similar results, with a slight benefit in spreading the tests over 7 days. S7 produced the most favorable clinical outcomes (delay = 1.7 days, cases = 1.8), yet required additional tests (33/case averted).

Results of the sensitivity analyses were concordant with our primary scenarios. Incremental benefits associated with more frequent testing increased with the high community importation rate, high infectiousness, and low-test sensitivity scenarios (Appendix, Supplementary Results).

Discussion

Our simulation of 7 SARS-CoV-2 testing strategies varying frequency and sampling suggests that the optimal strategy is informed by the level of community transmission and the basic reproduction number within the LTCF. We recommend testing at least 50% of people weekly in the context of a low probability of infectiousness (R0 < 2), and 100% of people weekly when the probability of transmission is higher (R0 = 3 and community importation rate = 3.6 * 10^-5). Testing 100% of people twice a week may be beneficial when the risk is very high (R0 = 5 or importation rate = 7.14 * 10^-5). Once a case is diagnosed, more comprehensive testing should follow.5

Acknowledgments

C.L.D. received a PhD trainee fellowship from the Canadian Network on Hepatitis C. The Canadian Network on Hepatitis C is funded by a joint initiative of the Canadian Institutes of Health Research (NHC-142832) and the Public Health Agency of Canada. C.L.D. also received a doctoral training award from the Fond de Recherche du Québec — Santé. S.S. received post-doctoral fellowships from the Fond de Recherche du Québec — Santé and the Canadian Institutes of Health Research. Q.D.N. received a doctoral training award from the Fond de Recherche du Québec — Santé and from the Canadian Institutes of Health Research.

References

Mental Health Impact of SARS-COV-2 Pandemic on Long-Term Care Facility Personnel in Poland

Dear Editor:

The COVID-19 pandemic has had a disproportionate impact on long-term care facility (LTCF) residents worldwide, with 19% to 72% of COVID-19–related deaths occurring in LTCFs.1 While facing this critical situation, LTCF personnel have to cope with an overwhelming workload, a depletion of adequate personal protection equipment (PPE), and deaths caused by SARS-CoV-2 infections.2,3 As of this writing, there are few scientific studies addressing epidemiologic data and intervention models focused on LTCF and COVID-19. Therefore, the aim of this study was to assess psychological consequences (somatic symptoms, anxiety and insomnia, social dysfunction, and depression) among LTCF employees exposed to the SARS-CoV-2 coronavirus pandemic crisis. In addition, we investigated if factors such as PPE availability, safety guidelines, or access to psychiatric and psychological support at the workplace correlated with the level of psychological distress experienced by personnel.

Data were collected through an anonymous online survey between May 25 and June 25, 2020, among personnel of Polish LTCFs. The survey was accessed 242 times, and 12 participants’ responses were rejected for leaving >70% questions unanswered. The response rate was 73.5% (n = 178 completed surveys); participants included LTCF personnel, including managers, administrative and maintenance staff, nurses, medical doctors, medical caregivers, social workers, physiotherapists, occupational therapists, and psychologists.

The survey consisted of 3 sections: (1) the sociodemographic section; (2) the authors’ questionnaire with questions related to COVID-19 exposure, working conditions, access to PPE and mental health services; and (3) the General Health Questionnaire (GHQ-28),4 which consists of 28 questions scored on a 4-point Likert-type scale, illustrating the frequency of specific psychopathological symptoms such as somatic symptoms, anxiety and insomnia, social dysfunction, and depression experiences over the preceding 4 weeks. Higher GHQ-28 scores indicate higher levels of distress. The study obtained ethical clearance (KB-365/2020) and was performed in accordance with the Declaration of Helsinki.

The statistical analysis was performed with the R for Windows package (version 4.0.2). The normality of data was analyzed using the D’Agostino-Pearson test and visual assessment. Comparisons of qualitative variables were performed using the chi-squared test. Qualitative and quantitative variables were compared using the Mann-Whitney or Kruskal-Wallis test. The level of statistical significance was set at 0.05.

The study findings demonstrate the importance of institutional factors of LTCF on mental health of employees (Table 1). First, LTCF staff who had PPE access at the workplace received lower scores in the GHQ-28 social dysfunction subscale (P = .018); especially important were disposable aprons (P = .02) and full-body protection suits (P = .006). These findings are in accordance with recent studies by Zhang et al5 and Maciaszek et al6 in which PPE access predicted better physical health and lower distress. Implementation of a mandatory face mask policy in Poland significantly reduced scores on all GHQ-28 subscales in the general population,7 indicating the significance of PPE for both physical and mental health.

Second, the results suggest that the availability of workplace safety guidelines reduced anxiety symptoms. Participants whose workplaces had well-developed guidelines scored lower in the GHQ-28 anxiety and insomnia subscale (P = .031). It is also in line with the Medicare & Medicaid Services perspective that sets quality and safety standards in the health care system and defined one of its goals as prevention of COVID-19 transmission through issuing guidance and recommendations, providing PPE and testing needs recommendations in LTC facilities, and increasing payment for COVID-19 testing.8

Third, working conditions were crucial for the mental health of the respondents, as LTCF shift workers scored higher in the GHQ-28 somatic symptoms subscale (P = .05). The feeling that there were too few people in the workplace during the pandemic was related to the greater severity of psychopathological symptoms as evaluated with the GHQ-28 total score (P = .009).

Finally, availability of psychological support and care was also a crucial factor associated with better coping with the pandemic situation. Our study presents evidence that people who knew that they

Charlotte Lanièce Delaunay, MPH Department of Epidemiology Biostatistics, and Occupational Health School of Population and Global Health McGill University Montreal, Canada

Department of Medicine McGill University Health Center Montreal, Canada

Sahar Saeed, PhD Department of Internal Medicine - Infectious Disease Washington University School of Medicine Institute for Public Health Center for Dissemination and Implementation St. Louis, MO, USA

Quoc Dinh Nguyen, MD, MA, MPH Department of Epidemiology, Biostatistics, and Occupational Health School of Population and Global Health McGill University Montreal, Canada

Division of Geriatric Medicine Centre Hospitalier de l’Université de Montréal Montreal, Canada

Centre de Recherche du Centre Hospitalier de l’Université de Montréal Montreal, Canada

http://doi.org/10.1016/j.jamda.2020.08.022

The authors declare no conflicts of interest.

Research Letter / JAMDA 21 (2020) 1568–1577
Supplementary Methods

Detailed model structure

We developed a stochastic, agent-based model of SARS-CoV-2 transmission among \(n = 280 \) residents and staff members of a hypothetical LTCF. Four disease states are modeled: (1) susceptible to infection; (2) infected — latent phase; (3) infected — infectious phase; and (4) post-infection (recovered or deceased). All individuals are susceptible at baseline, and 1 infectious case of SARS-CoV-2 is randomly imported into the LTCF as an exogenous shock during the first 2 weeks of simulation to seed the outbreak. Individuals are assumed to mix randomly and can acquire SARS-CoV-2 at a daily probability of \(p(t) = p_{\text{out}}(t) + p_{\text{in}}(t) \), with \(p_{\text{out}}(t) \) the probability of acquisition from an individual outside of the LTCF (eg, through visitors or staff members in contact with the community), and \(p_{\text{in}}(t) \) the probability of acquisition from an individual inside the LTCF. \(p_{\text{in}}(t) \) varies as a function of the number of infectious individuals at time \(t \), the basic reproductive number within the LTCF \(R_0 \), and the duration of infectiousness \(D_i \). Following infection, individuals enter a latent phase of duration \(D_L \), followed by an infectious phase of duration \(D_i \) before transitioning to the postinfection phase. The model tracks individual disease status daily (with fixed time steps) until a first case is diagnosed. We assumed that individuals can test positive for SARS-CoV-2 up to 14 days after the day of infection, with \(s_n \) the sensitivity of the reverse transcription polymerase chain reaction (RT-PCR) test. For each strategy, 1000 iterations were performed. Simulations were run using R version 4.0.0 (R Core Team, Vienna, Austria), and the code is available on https://github.com/quocdnguyen/test-strategy.

Sensitivity analyses

Since the probability of acquiring SARS-CoV-2 could vary among LTCFs we compared a range of \(R_0 \) values (1.5, 2, and 5) to reflect diverse transmission conditions. In addition, uncertainty subsists around the viral dynamics of SARS-CoV-2 and the sensitivity of viral tests. We, therefore, conducted secondary analyses using varying values for \(p_{\text{out}}(t) \) \((7.14 \times 10^{-4}, 20 \text{ times moderate community transmission}) \), \(R_0 \) (1.5, 2, and 5), \(D_L \) (3 days), and \(s_n \) (0.75 and 1.00).
Supplementary Fig. 1. Distributions of cumulative cases at time of first diagnosis by testing strategy for the primary scenarios. The left vertical axis shows 1 of the 7 testing strategies. The horizontal axis (truncated) indicates the cumulative number of cases at first diagnosis for all simulations [boxplot of the distribution (0.1, 0.25, 0.5, 0.75, and 0.9 percentiles) and mean]. Each point represents the result for 1 iteration. The right vertical axis shows the average number of tests conducted to diagnose the first case.

Supplementary Fig. 2. Distributions of cumulative cases at time of first diagnosis by testing strategy for the secondary scenarios (varying importation rate, R0, test sensitivity, and latency). The left vertical axis represents each 1 of the 7 testing strategies. The horizontal axis (truncated) indicates the cumulative number of cases at first diagnosis for all simulations [boxplots of the distribution (0.1, 0.25, 0.5, 0.75, and 0.9 percentiles) and mean]. The right vertical axis shows the average number of tests conducted to diagnose the first case. Each color displays a sensitivity analysis varying one parameter value from the primary scenario.