Risk of SARS-CoV-2 infection in Nursing Home residents according to COVID history and IgG(S) levels

Helene Jeulin, PharmD, PhD, Carlos Labat, BSc, Athanase Benetos, MD, PhD

PII: S1525-8610(22)00855-6
DOI: https://doi.org/10.1016/j.jamda.2022.11.004
Reference: JMDA 4496

To appear in: Journal of the American Medical Directors Association

Received Date: 21 October 2022
Revised Date: 2 November 2022
Accepted Date: 5 November 2022

Please cite this article as: Jeulin H, Labat C, Benetos A, Risk of SARS-CoV-2 infection in Nursing Home residents according to COVID history and IgG(S) levels, Journal of the American Medical Directors Association (2022), doi: https://doi.org/10.1016/j.jamda.2022.11.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of AMDA -- The Society for Post-Acute and Long-Term Care Medicine.
Risk of SARS-CoV-2 infection in Nursing Home residents according to COVID history and IgG(S) levels

Helene Jeulina PharmD, PhD, Carlos Labatb BSc and Athanase Benetosc* MD, PhD:

a Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
b Université de Lorraine, Inserm, DCAC, F-54500 Vandœuvre-lès-Nancy, France
c Université de Lorraine, Inserm, DCAC, F-54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, CHRU-Nancy Brabois, Department of Clinical Geriatrics F-54500 Vandœuvre-lès-Nancy France

*Address correspondence to:
Prof. Athanase Benetos, MD, PhD,
Department of Geriatrics, Hôpital Brabois,
Rue Morvan, 54500, Vandœuvre-lès-Nancy,
University Hospital of Nancy (CHRU), Université de Lorraine, Nancy, France.
e-mail: a.benetos@chru-nancy.fr

Funding sources:
Agence Nationale de la Recherche, Grant/ Award Number: ANR-15-IDEX-04-LUE.
The sponsor did not have any role in the design, methods, subject recruitment, data collection, analysis and interpretation of the results, or preparation of the article.

Brief summary: History of past COVID-19 and age, but not IgG(S) levels, are a major determinant for risk of SARS-CoV-2 infection in old Nursing Home residents

Acknowledgements:
We thank all the directors and the staff of the nursing homes of the Lorraine Region for contributing to the realization of this study. We thank Mr Pierre Pothier for language review and stimulating discussions.

Word count: 749; Reference count: 7; Graphics count: 1.
Introduction

From the onset of the pandemic, very old frail adults, such as Nursing Home (NH) residents, were among the populations most likely to develop severe forms of COVID-19. Mass vaccination of this population has resulted in an impressive decrease in COVID-19-related morbidity and mortality.\(^1\)

In a previous study in NH residents, we reported that history of COVID-19 provided a clear advantage in the magnitude and duration of high (immunoglobulin G anti-Spike antibody, IgG(S)) titers following the 2\(^{nd}\) dose of COVID-19 mRNA vaccine BNT162b2 (BioNTech-Pfizer).\(^2\) The question here is whether a higher IgG(S) level as well as history of prior COVID-19 offers protection against SARS-CoV-2 infection.

Methods

We assessed the risk of SARS-CoV-2 infection in 234 NH residents all vaccinated with three doses of the BNT162b2 (mean age=87±9 years; 76% women), with IgG(S) quantification 39±9 days after the 3\(^{rd}\) dose. The follow-up of this cohort began the day of the 3\(^{rd}\) vaccination of each resident (09/15/2021 – 10/28/2021) and ended for all patients on May 15, 2022. Mean follow-up duration was 215±8 days. History of COVID-19 (i.e., positive RT-PCR) before the 3\(^{rd}\) vaccination was investigated retrospectively at the onset of the pandemic in France (March 1, 2020). Among the 234 residents, 54 had a history of COVID-19 prior to the 3\(^{rd}\) dose (04/10/2020 - 04/01/2021) and 71 developed SARS-CoV-2 infection after the last IgG(S) quantification (11/05/2021 – 04/24/2022). At the end of the study, none of the subjects of this cohort had died from COVID-19.
This study was registered in ClinicalTrials.gov (NCT04964024) and received the approval of the Ethics Committee of the University Hospital.

Results

Among residents with no history of COVID-19, 38% (68/180) were infected by SARS-CoV-2 after the 3rd vaccine dose vs. 6% (3/54) among those with history of COVID-19 (p<0.0001). Time between the 3rd vaccination and SARS-CoV-2 infection was 156±29 days and 138±79 days in residents with and without history of COVID-19, respectively (p=0.75).

Logistic regression analysis showed that the risk of SARS-CoV-2 infection was not associated with IgG(S) levels (p=0.45), but was 90% lower in residents with history of COVID-19 (p<0.001, Figure 1). Age was the only other significant determinant with a 50% increase in SARS-CoV-2 infection for each increase in 10 years of age (p=0.03).

Interestingly, 51 out of 54 NH residents with history of COVID-19 were not re-infected at the time of the study, i.e., after a mean of 588 days (409 to 765 days).

Discussion

We previously reported that, in vaccinated NH residents, history of COVID-19 induces a more pronounced IgG(S) response and longer protection². Here we show that history of COVID-19 was a very strong protector against SARS-CoV-2 infection but that IgG(S) level was not associated with this protection. Similarly, it has been demonstrated that, in young individuals (< 53 years-old), the risk of SARS-CoV-2 infection remained low for a longer period when vaccine immunity was combined with previous infection.³ Several studies have supported the beneficial effects of pre-exposure to SARS-CoV-2 for immune protection. Data in older individuals underscored that SARS-CoV-2 infection prior to
vaccination resulted in the best immune humoral responses to vaccination (e.g., anti-spike antibody levels and neutralization titers)\(^4\). In addition, increased frequencies of pre-existing S-II specific CD4\(^+\) T cells, following SARS-COV-2 pre-exposure, were associated with the efficacy of anti-S1 IgG and S1 neutralizing vaccination responses in the elderly\(^5\). Protection associated with previous COVID-19 infection may depend on i) non-neutralizing antibodies, which bind to viral proteins but do not neutralize SARS-CoV-2 and are deemed to contribute to the immune control of infection, even when serum neutralizing activity has declined\(^6\); ii) T cell responses directed towards SARS-CoV-2 antigens that are present in convalescent individuals at sufficient levels to mount a recall response upon reinfection\(^6\) although cannot be assessed through serological methods.

Since all NH-resident presented high IgG(S) levels at the time of the study, it was not possible to ascertain whether effective protection against SARS-CoV-2 infection, associated with history of COVID-19, will persist after the decrease in IgG(S) levels; nevertheless, specific cellular immunity has been observed in 50% of seronegative NHR, six months after vaccination\(^7\). In conclusion, in very old fully vaccinated NH residents, IgG(S) levels were not associated with protection against SARS-CoV-2 infection whereas absence of history of COVID-19 as well as older age were associated with a higher risk of SARS-CoV-2 infection.

The confirmation of these results in larger clinical studies could lead to the conclusion that in vaccinated NH residents, history of SARS-COV-2 infection can be a strong factor for return to a normal social life.

Conflict of interest statement

Authors have no conflict of interest.
References

Figure 1. Logistic regression of SARS-CoV-2 infection in Nursing Home residents after the 3rd vaccination. Absence of history of prior COVID-19 was associated with a 10-fold increase in the risk of SARS-CoV-2 infection. Age also was a significant determinant of the risk of SARS-CoV-2 infection. Sex and IgG anti-spike antibody (IgG(S)) levels following the 3rd dose of COVID-19 mRNA vaccine BNT162b2 (BioNTech-Pfizer) were not associated with the risk of SARS-CoV-2 infection.
<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Odds Ratio</th>
<th>Odds Ratio (CL95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (10 yr)</td>
<td>1.56</td>
<td>1.56 (1.04-2.33)</td>
<td>0.03</td>
</tr>
<tr>
<td>Female (yes)</td>
<td>1.32</td>
<td>1.32 (0.62-2.79)</td>
<td>0.47</td>
</tr>
<tr>
<td>IgG (S) post 3rd vaccine (1 log10)</td>
<td>0.79</td>
<td>0.79 (0.44-1.44)</td>
<td>0.45</td>
</tr>
<tr>
<td>History of COVID before 3rd vaccine</td>
<td>0.10</td>
<td>0.10 (0.03-0.34)</td>
<td><0.001</td>
</tr>
</tbody>
</table>